VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. I Year II-Semester Examinations*, July/August-2016

Mathematics-II

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A
$$(10 \times 2 = 20 Marks)$$

1. If
$$\bar{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$$
, show that $(\bar{u}.\nabla)\vec{r} = \bar{u}$

2. Find a unit normal vector to the surface $xy^3z^2 = 4$ at the point (-1,-1,2).

3. Solve
$$(xy^3 + y)dx + (2x^2y^2 + x + y^4)dy = 0$$

4. Solve
$$y = xp - p^3$$
 where $p = \frac{dy}{dx}$.

5. Solve
$$(D^3 - 7D - 6)y = 0$$

6. Find the particular integral of
$$[D^2 + 2]y = x^2$$

8. Show that
$$P_4(x) = \frac{1}{8} [35x^4 - 30x^2 + 3]$$

10. Prove
$$\left[J_{1/2}(x)\right]^2 + \left[J_{-1/2}(x)\right]^2 = \frac{2}{\pi x}$$

Part - B (5 × 10=50 marks) (All bits carry equal marks)

11. a) Show that
$$\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$$

b) Using Green's theorem in the plane for
$$\oint_C (x^2 + y^2) dx + (y + 2x) dy$$
 where C is the boundary of the region defined by $x = y^2$ and $y = x^2$.

12. a) Find the general solution of the Riccati equation
$$y' = 3y^2 - (1+6x)y + 3x^2 + x + 1$$
. If $y = x$ is a solution of the differential equation.

13. a) Solve the initial value problem
$$y'' - 2y' + 3y = 0$$
 with $y(0) = 1$, $y'(0) = 0$.

b) Find the general solution of the equation
$$y'' - 2y' + 2y = e^x tanx$$
 using the method of variation of parameters.

14. a) Prove that
$$(1 - 2xt + t^2)^{-1/2} = \sum_{n=0}^{\infty} t^n P_n(x)$$

b) Show that
$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

15. a) Show that
$$\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma m + n}$$

b) Show that
$$J_3(x) = \left[\frac{8}{x^2} - 1\right] J_1(x) - \frac{4}{x} J_0(x)$$

- 16. a) Find the directional derivative of $f(x, y, z) = x^2 + y^2 + 2z^2$ at the point (1, 1, 2) in the direction of i 2j + 2k.
 - b) Solve the differential equation $(D^2 + 4)y = x \sin x$
- 17. Answer any two of the following:

a) Solve
$$\frac{d^2y}{dx^2} + x^2y = 0$$
 in series about $x = 0$

b) Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0$$
, $m \neq n$

c) Prove that
$$\gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
